1	Can U.S. import regulations reduce IUU
2	fishing and improve production practices in
3	aquaculture?
4	
5	Yingkai Fang*
6	Department of Aquaculture and Fisheries, University of Arkansas
7	at Pine Bluff, Email: fangy@uapb.edu
8	
9	Frank Asche
10	Food Systems Institute and School of Forest, Fisheries and
11	Geomatics Sciences, University of Florida, U.S.
12	Department of Industrial Economics, University of Stavanger,
13	Stavanger, Norway
14	
15	Abstract
17	
16 17	Illegal, Unreported, and Unregulated (IUU) fishing is a significant challenge to sustainable seafood production which is difficult to
17	address in traditional governance systems. Recently, the U.S. has
18	implemented a Seafood Import Monitoring Program (SIMP) to
20	combat IUU fishing and seafood fraud by requiring chain-of-
21	custody documentation of 13 species when imported to the U.S.
22	This will exclude IUU seafood from the U.S. market. If the U.S.
23	has market power due to large imports, it will also give exporters
24	incentives to improve management to comply with the SIMP.
25	However, if the U.S. has no market power, the effect of the SIMP
26	will be a change in trade patterns and the costs associated with the
27	SIMP will be carried by U.S. consumers in the form of higher
28	prices and lower seafood consumption. In this paper, a residual
29	supply approach is used to investigate whether the U.S. has buyer
30	power for three species included in the SIMP: shrimp, crab, and
31	tuna. The standard residual supply framework is augmented to
32	account for exchange rates. The results indicate that the U.S. has
33	buyer power for most products. Hence, the SIMP will give
34	incentives to improve the management practices in the investigated
35	supply chains.
36 37	Key words: SIMP; residual supply; IUU fishing; international trade
38	
39	* Corresponding author
40	shourand manor
10	

41 42	Can U.S. import regulations reduce IUU fishing and improve production practices in aquaculture?
43 44	Abstract
45	Illegal, Unreported, and Unregulated (IUU) fishing is a significant
46	challenge to sustainable seafood production which is difficult to
47	address in traditional governance systems. Recently, the U.S. has
48	implemented a Seafood Import Monitoring Program (SIMP) to
49	combat IUU fishing and seafood fraud by requiring chain-of-
50	custody documentation of 13 species when imported to the U.S.
51	This will exclude IUU seafood from the U.S. market. If the U.S.
52	has market power due to large imports, it will also give exporters
53	incentives to improve management to comply with the SIMP.
54	However, if the U.S. has no market power, the effect of the SIMP
55	will be a change in trade patterns and the costs associated with the
56	SIMP will be carried by U.S. consumers in the form of higher
57	prices and lower seafood consumption. In this paper, a residual
58	supply approach is used to investigate whether the U.S. has buyer
59	power for three species included in the SIMP: shrimp, crab, and
60	tuna. The standard residual supply framework is augmented to
61	account for exchange rates. The results indicate that the U.S. has
62	buyer power for most products. Hence, the SIMP will give
63	incentives to improve the management practices in the investigated
64	supply chains.

65 Keywords: SIMP; residual supply; IUU fishing; international trade

1. Introduction

68	The United States (U.S.) is the world's largest seafood importer by
69	value and recognized as a global leader in promoting sustainable
70	seafood production (FAO, 2020; NOAA, 2020). Moreover, despite
71	significant domestic production, seafood imports to the U.S. have
72	grown over 50% since 1980 (NOAA, 2020). ¹ A challenge with
73	these imports is that a significant share may come from fisheries
74	and aquaculture producers with problematic environmental
75	production practices, such as Illegal, Unregulated, and Unreported
76	(IUU) fishing, seafood fraud (also related to aquaculture), and
77	excessive use of antibiotics in aquaculture (Roheim and Sutinen,
78	2006; Cabello et al., 2013; Lampert, 2017; Willette and Cheng,
79	2018; NOAA, 2018a). IUU fishing is an environmental challenge
80	as it leads to depleted fish stocks and unsustainable fisheries
81	(Roheim and Sutinen, 2006). Seafood fraud can facilitate
82	overfishing as fish from unsustainable fisheries are marketed as
83	sustainable (Kroetz et al., 2020) and can also be a food safety risk.
84	Excessive antibiotics use, if traces remain in the seafood a food
85	safety risk, may cause environmental externalities at the source.
86	Seafood is over-represented as a carrier of the food-born disease
87	(Uchida et al., 2017: Love et al., 2021).

¹ NOAA (2020) estimates that over 80% of the seafood consumed in the U.S. is imported. Gephart et al. (2019) estimate that this figure is lower, but still, that over 60% of the seafood consumed is imported.

88	In an attempt to combat IUU fishing and seafood fraud, a
89	Seafood Import Monitoring Program (SIMP) has been instigated.
90	A pilot for the program took effect on January 1, 2018, initially for
91	eleven species and was extended with two more from April 1,
92	2019, and will be extended to all the other seafood imports if the
93	program is successful (NOAA, 2018c). ² The thirteen high-risk
94	species in relation to IUU fishing that made up over 40% of U.S.
95	imports by value in 2016 (NOAA, 2018b; USITC, 2018). ³ The
96	SIMP requires that a complete production record of the seafood
97	imported to the U.S. is traced and provided, demonstrating that the
98	fish is legally caught or produced and that it is from sustainably
99	managed fisheries or aquaculture (NOAA, 2018a). Seafood
100	imports without the required files will not be released by the
101	Customs and Border Protection (CBP) (Havice, 2017), constituting
102	an import ban in practice. However, it is also worthwhile to note
103	that while the pilot program has been instigated, there are so far
104	very limited enforcement and guidelines with respect to the

² According to the World Trade Organization, the U.S. cannot restrict the import of products due to concerns with the production process if the domestic producers are not held to the same requirement. The pilot species were therefore reduced to 11 and did not include abalone and shrimp. From December 31, 2018, the pilot extended to these two species, and restrictions on the aquaculture management of abalone and shrimp have been released by NOAA in 2019 (NOAA, 2018c; NOAA, 2019a).

³ Priority species in the SIMP are: Abalone, Atlantic Cod, Blue Crab (Atlantic), Dolphinfish (Mahi Mahi), Grouper, King Crab (red), Pacific Cod, Red Snapper, Sea Cucumber, Sharks, Shrimp, Swordfish and Tunas (Albacore, Bigeye, Skipjack, Yellowfin, and Bluefin).

105 required documentation, so beyond paperwork, it has had a very106 limited impact so far (Connelly, 2019).

107	This study focuses on the potential for the SIMP to achieve
108	its objectives for the three most important species by import value
109	in the SIMP: shrimp, crab, and tuna. Shrimp is the most consumed
110	seafood species in the U.S., making up to 27.5% of American
111	seafood consumption in 2017 (Shamshak et al., 2019; Love et al.,
112	2020), and shrimp farming is one of the fastest-growing industry in
113	aquaculture (Kobayashi et al., 2015; Garlock et al., 2020). While
114	there are significant landings of domestic shrimp in the U.S., the
115	market is dominated by imported shrimp, primarily from
116	aquaculture in developing countries (Asche et al., 2012; Smith et
117	al., 2017). However, the shrimp aquaculture industry often
118	operates in countries with poor governance systems, with
119	significant negative impacts on the environment as well as food
120	safety concerns such as excessive use of antibiotics (Broughton
121	and Walker, 2010; Cabello et al., 2013; Kroetz et al., 2020). Tuna
122	and crab are primarily sourced from fisheries and imported from
123	regions with weak fishery management systems (NOAA, 2020).
124	For instance, king crab is one of the most important crab species in
125	the SIMP by the import value, and nearly 90% of the king crab
126	imported to the U.S. are from Russia (USITC, 2019), where IUU
127	fishing is a real concern as the actual crab export levels are

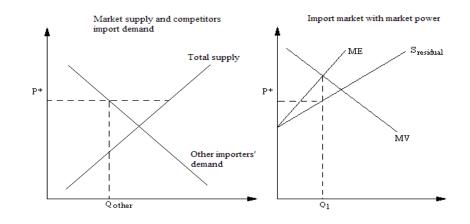
128	reported to be two to four times higher than the official harvest
129	levels (WWF, 2014). ⁴ Global tuna fisheries also face significant
130	challenges due to the high levels of IUU fishing (WWF, 2007). As
131	much as 70% of the tuna products have been reported to be from
132	IUU fishing in Pacific tuna fisheries (Souter et al., 2016). ⁵
133	Whether the SIMP will provide incentives to reduce IUU
134	fishing and improve the production practices in aquaculture
135	depends on the extent to which the U.S. as an importer has
136	oligopsony power relative to the exporting countries. If the U.S.
137	has no buyer power, seafood from IUU fisheries will just be
138	exported to the other countries, and producers will have no
139	incentives to incur costs to comply with the SIMP. For products
140	that fulfill the U.S. requirements and are imported to the U.S., the
141	cost associated with SIMP will be fully borne by the U.S.
142	importers and ultimately the U.S. consumers. As a result, the
143	increasing price of these products in the U.S. will reduce seafood
144	imports and domestic consumption. On the other hand, if the U.S.
145	has buyer power, the implementation of SIMP will give countries
146	whose management systems do not conform to the sustainable

⁴ Blue crab is also a target species in the SIMP. Here, the buyer power of the U.S. in the blue crab market will not be tested since the majority of blue crab products are fresh and domestically produced. Only few products of blue crab crabmeat are imported (USITC, 2018).

⁵ It is worthwhile to note that it is not necessarily the illegal part of IUU that is the challenge here. McCluney et al. (2019) provide a good discussion of tuna management in the Pacific.

147	requirements incentives to improve their management systems. If
148	this is the case, the SIMP has the potential to reduce IUU fishing or
149	improve the aquaculture production practices, and the costs in
150	compliance with the SIMP will be shared between exporters and
151	U.S. consumers as determined by the relevant supply and demand
152	elasticities. Hence, it is of interest to investigate whether the U.S.
153	has buyer power for the species included in the SIMP pilot as this
154	is a necessary although not sufficient condition for the SIMP
155	initiative to actually reduce IUU fishing and improve aquaculture
156	production practice. ⁶ The U.S. is a particularly important importing
157	country for many of the seafood species included in the SIMP,
158	making it more likely that the U.S. has the market power for these
159	species.
160	To estimate the potential buyer power of the U.S., residual
161	supply equations are estimated for the main exporters of the three
162	seafood species. The origin of this model is the residual demand
163	model of Baker and Bresnahan (1988). Durham and Sexton (1992)
164	adopted this model to a buying power setting by specifying a
165	residual supply curve. In an international trade setting, somewhat
166	different factors influence the degree of competition. Goldberg and
167	Knetter (1999) derive a residual demand model for import demand

 $^{^6}$ To be sufficient, the benefits of exporting to the U.S. must outweigh the cost of the introducing the SIMP.


168	and note that exchange rate variation is particularly useful for
169	model identification. This paper adopts the residual supply model
170	of Durham and Sexton (1992) in an international trade setting
171	similarly as Goldberg and Knetter (1999) adopted the Baker and
172	Breshnahan (1988) residual demand model to this setting.
173	The following of this paper is structured as: In the
174	following section, the residual supply method will be introduced
175	by a start from a graph description. Then data analysis to estimate
176	the buyer power of the U.S. on different seafood species by
177	countries is given. Next, the results of the estimation on the U.S.
178	buyer power of the interested species using the residual supply
179	model is described. Finally, concluding remarks are offered.
180	

181 **2. Method**

182 A graphical representation of a residual supply equation is a useful 183 starting point for the analysis. The residual supply curve that faces 184 an importing country depicts how a country influences the input 185 price through the quantity it purchases. To derive the residual 186 supply, one has to take into account the total supply from the 187 relevant source and the derived demand of all the other importers 188 of the product. This is illustrated in Figure 1. The left panel shows 189 the total market supply, S, and the derived demand from all the 190 other countries importing the product in question, Dother. The

191	residual supply $S_{residual}$ curve shown in the right panel is then given
192	by the difference between the market supply and the other
193	countries' derived demand, which will determine the elasticity of
194	the residual supply curve. In a competitive market, the price is
195	completely determined by the other countries' derived demand,
196	and the residual supply curve will be flat and there is no scope to
197	exploit oligopsony power. In this case, an import restriction will
198	not have any effect on the price of the exporter. If the supply curve
199	is an upward-sloping one, it implies that the country of interest has
200	some oligopsony power. ⁷ Given at the price P*, for instance, if the
201	country will maximize its profits or to obtain a maximum rent
202	transfer, the country can act as a monopsonist on the marginal
203	expenditure (ME) curve. When the residual supply curve and the
204	market supply curve coincide, i.e., have the same slope, the
205	country will be a monopsonist as there will be no other countries
206	importing the product.

⁷ Note that this does not necessarily imply that individual importers in the importing country have oligopsony power. It is changes in aggregate imports that influence the exporter's price. As a result, this can be exploited by introducing trade measures that serve to 'coordinate' the importers in reducing the quantity imported. Trade measures as a coordination mechanism was discussed by Steen and Salvanes (1999).

207

Figure 1. Market supply and residual supply of intermediate good M

210

211 To test for the oligopsony power, a residual supply 212 schedule provides a single equation that can be easily estimated 213 when given a functional form. This provides a different approach 214 to test for oligopsony power than the specifications of Schroeter 215 (1988) and Morrison Paul (2001), who specified the markup 216 equation together with a full cost function specification similar to 217 the approach of Appelbaum (1982). Schroeter et al. (2000) used 218 the model of Bresnahan (1982) and Lau (1982). The fact that a 219 residual supply schedule can be estimated as a single linear 220 equation in its parameters in many cases will make it an easier 221 specification to use in the empirical work. The specification is 222 independent of the assumptions about market structures in other 223 markets, and any behavior on the buyer side from a competitive 224 situation to a monopsony can be identified. Moreover, the inputs 225 can be differentiated, which is an important feature in international 226 trade as many products are differentiated by origin. Finally, 227 estimating the residual supply curve does not require the conduct 228 parameters to be estimated, and one accordingly avoids the issues 229 addressed by Corts (1999). 230 The inverse supply function for an exporter (or 231 intermediate good M) facing the importing country of interest, im, 232 the country of interest, is $w^{im} = W^{im}(Q^{im}, w^2, \dots, w^n, V^s)$ (1)

where
$$w^{im}$$
 and Q^{im} are the interested importing country's import
price in the exporter's currency and quantity, $w^2, ..., w^n$ is a vector of
import prices to other countries of the good in the exporters'
currencies, and V^s is a vector of exogenous variables entering the
supply equation, typically the supplier's input prices in the
exporter's currency. Correspondingly, we can formulate the
inverse supply facing each of the other importers of good M , $i =$
 $2, ..., N$, as
 $w^i = W^i(Q^i, w^j, w^{im}, V^s)$ (2)
Goldberg and Knetter (1999) provide a discussion on how

L リ the export industry's first order conditions can be derived for a 243 244 specific firm. A similar procedure is used here. As the object of 245 interest is the import demand of a country, one can, by assuming 246 the appropriate aggregation conditions are fulfilled, just pose the

 $\max_{Q_i^{im}} \pi_i^{im} = epf(Q^{im}, \mathbf{z}) - w^{im}Q^{im} - erz$ 249 (3) 250 where *e* is the exchange rate, *p* is the importer's sales price of the 251 good in domestic currency, $f(\cdot)$ is the production function, which is related to the import quantity (Q^{im}) and the quantities of other 252 253 input factors (e.g. marketing costs) (denoted as z vector) over the time period we investigated.⁸ Here, r is the prices of inputs in the 254 255 domestic currency. The first-order conditions imply that the 256 marginal revenue product (MRP) is set equal to the perceived 257 marginal expenditure (ME). The MRP shows the additional value 258 that the importing country attaches to a marginal increase in import 259 of the product, and it is found by taking the derivative of the first 260 term on the right-hand side of equation (3) with respect to the 261 imported quantity, Q^{im}. Likewise, the ME shows the additional 262 outlay following a marginal increase in imports, and it is found by 263 taking the derivative of the second term on the right-hand side. 264 Since *ME* depends on the importing country's conjectures 265 concerning the response from other importers, it is perceived, 266 rather than actual, as the marginal expenditure. By solving the 267 equation (3), the first-order condition can be written as:

importer's problem. For every exporter, import demand for the

good can be found by solving the profit-maximizing problem:

247

⁸ We assume that the state of technology is fixed in this continuous production function in our analysis.

$$w^{im} = eMRP^{im} - Q^{im} \sum_{j} \left(\frac{\partial W^{im}}{\partial w^{j}}\right) \left(\frac{\partial w^{j}}{\partial Q^{im}}\right) \tag{4}$$

The degree of market power is determined by the last parenthesis $\frac{\partial w^j}{\partial q^{im}}$, which is often denoted by a conduct parameter λ^{im} . The conduct parameter λ^{im} shows the conjectures about the impacts on the other countries' import prices of increased demand from the country of interest. A similar expression can be found for all the other countries that import the good:

$$w^{i} = e^{i} MRP^{i}(p^{i}, r^{i}) - Q^{i} \sum_{j} \left(\frac{\partial w^{i}}{\partial w^{j}}\right) \left(\frac{\partial w^{j}}{\partial Q^{i}}\right)$$
(5)

for i = 1,...,N. Solving the equations defined by (2) and (4), one obtains the import prices in the competing importing countries as functions of the supply and demand shifters, and the imported quantity. Using the vectors notation, this is given as:

$$w^{i} = E^{I}(Q^{im}, V^{s}, eR, eP, \lambda^{I})$$
(6)

where E^{I} is the equilibrium quantity for all markets except for the market of interest, P is the importer's sales price of the good in domestic currency in equilibrium, and R is the price of inputs in the domestic currency in equilibrium. All right-hand side variables but Q^{im} are exogenous. Equation (3-6) can, therefore, be denoted as a partially reduced form. By substituting equation (6) into (1), one obtains the residual supply relationship facing the country of interest as follows:

$$w^{im} = W^{im}(Q^{im}, E^I(Q^{im}, V^s, eR, eP, \lambda^I), V^s)$$
(7)

287 Substituting out the redundancies, this gives the residual supply

288 curve facing the country of interest as the formula below:

$$w^{im} = S^{res,im} \left(Q^{im}, V^s, eR, eP, \lambda^l \right) \tag{8}$$

Here, the residual supply curve is a function of the demanded

290 quantity of the import goods, the supply shifters V^{s} , and the

291 demand shifters for the other countries buying the goods, which

are divided into their sales price eP and the price for their input

293 factors *eR*. The output price, other input factor prices, and the

294 exchange rate for the importing country are not included in this

295 equation and will serve as the instruments for the endogenous

- 296 quantity Q^{im} .
- 297 The key parameter of interest is the inverse residual supply 298 elasticity, or the residual supply flexibility, which is expressed as:

$$\kappa = \frac{\partial lnS}{\partial lnQ^{im}} \tag{9}$$

299 This elasticity κ will be zero if the demanded quantity of the 300 importing country does not influence the import price and the 301 importing country does not have any market power. The 302 significance level of this elasticity indicates if the importing

303	country has buyer power or not. The elasticity increases in
304	magnitude as the market power of the importing country increases.
305	As the model is formulated at the country level one can, of
306	course, provide criteria that give consistent aggregation as in
307	Appelbaum (1982), or one can interpret the estimated parameters
308	as an average indicator of the industry as in Goldberg and Knetter
309	(1999). Golberg and Knetter (1999) are typical representatives of
310	the Pricing-To-Market literature, where exporting and importing
311	countries are the unit of analysis. In general, when using the
312	aggregated data, little focus is given to whether the aggregation
313	criterion is met. What matters in relation to the trade policy is that
314	trade measures can be interpreted as coordinated actions by the
315	importing firms in a country. This also applies in the case of the
316	trade regulations on the import, as these are typically levied on all
317	exporters from a given country. We will not elaborate further on
318	this issue here, but only note that the models can be used on
319	aggregated data to test whether groups of firms have market power
320	if one is willing to assume that an aggregation criterion holds or to
321	make interpretations based on the aggregated data directly.
322	As noted by Goldberg and Knetter (1999), in general, there
323	are substantially greater variations on the exchange rates than in
324	factor prices and other cost variables, which is also true for the
325	variables influencing revenue. With functional forms like a double

log, where it is reasonable to separate the exchange rates from the prices, the exchange rates may provide a very good indicator for changes in the marginal costs or the import demand even if the data of input price is not available. It is also reasonable to treat the exporter as a revenue maximizer, basically by modeling the supply as a trade allocation.⁹ If so, all the supply variables can be obtained from the exporting country's trade statistics.

333

334 3. Model specification and data

335 The residual supply equation to be estimated is given as:

$$lnP_t = \beta_0 + \beta_1 lnQ_t + \beta_2 lnS_t + \beta_3 lnD_t + \varepsilon_t$$
(10)

336 where P_t is the import price to the U.S. in the exporting country's 337 currency, and Q_t is the quantity of goods imported. S_t is a vector 338 of exogenous supply shifters in the exporting country, including 339 the wage rate, the fuel price, and the total production of this 340 species in the exporting country, with the prices in the local 341 currency. The vector D_t contains exogenous demand shifters for 342 alternative countries/markets to the U.S. The demand shifters are 343 represented by the wage rates in the alternative countries and the 344 exchange rates between the exporting country and the alternative

⁹ See e.g. Dixit and Norman (1980) for a discussion of the use of revenue functions to model trade allocation.

schedule is not horizontal. The U.S. import demand equationprovides the instruments. These are the U.S. retail price, U.S.
347 provides the instruments. These are the U.S. retail price, U.S.
348 production, exchange rates between the U.S. and the exporting
349 country, the wage rate of the U.S. in addition to the lagged
350 dependent variables.
351 The data covers the period from 2006 to 2016 and is
352 limited by the availability of the U.S. retail scanner data to obtain
353 the U.S. retail price. Quarterly import quantity and value for the
354 seafood products are obtained from the U.S. International Trade
355 Commission (USITC), where the data is organized by product
356 form using the Harmonized Tariff Schedule (HTS) 10-digit codes
357 (USITC, 2018). The retail price of each seafood species is obtain
358 from the Nielsen scanner data panel (Nielsen, 2018). ¹¹ The diesel
359 price is collected from the U.S. Energy Information Administration
360 (EIA) (EIA, 2018). FAO FishStatJ (Fisheries and aquaculture
361 software, 2016) provides the production statistics in the exporting
362 countries. The wage rates of all the countries are downloaded from
363 the World Bank (World Bank, 2018), and the exchange rates are

¹⁰ We have also estimated the equations with interest rates as a measure of user cost of capital. These results are not reported as in all cases these parameters were statistically insignificant, and dropping the variable did mot influence the interpretation of the results.

¹¹ We took the weighted average price for each seafood by quarters based on a monthly data available from Nielsen scanner panel dataset.

365	2018). Finally, the alternative markets are found based on the
366	import shares from the United Nations Comtrade Database (UN
367	Comtrade, 2018).
368	For each of the species to be investigated, we chose the
369	product forms and export countries that make up the main share of
370	the imports as this is the source where the U.S, is most likely to be
371	able to exercise buyer power. A summary of the data used in
372	relation to total imports is provided in the appendix. Frozen shrimp
373	is the largest imported shrimp category both in value and quantity
374	to the U.S., making up more than 70% of the total shrimp imports.
375	The main categories of the frozen shrimp are peeled shrimp and
376	shell-on shrimps in different weights, which almost take equal
377	import shares. Asche et al. (2012) found that the U.S. shrimp
378	market is highly integrated, and the relative prices are constant.
379	Hence, the frozen shell-on shrimp and the frozen peeled shrimp are
380	aggregated into one category. Thailand, Ecuador, Indonesia, and
381	India are the largest shrimp suppliers to the U.S., and these
382	countries together supply almost two-thirds of the frozen shrimp
383	imported The alternative markets of these four main exporting
384	countries vary by country. For Thai shrimp, Japan, Canada, United
385	Kingdom, South Korea are considered alternative markets. For
386	Ecuadorian shrimp, the largest alternative markets are Vietnam,

obtained from the Federal Reserve Bank of St. Louis (FRED,

387	EU, China, and South Korea. For Indonesian shrimp, alternative
388	markets are Japan, EU, Vietnam, and China, and for Indian shrimp,
389	alternative markets are Japan, Vietnam, and the EU.
390	Frozen crab is clearly the most important by an import
391	share of more than 90% (USITC, 2018). Russia is the only
392	exporting country of interest in this study as almost 90% of the
393	king crabs imported to the U.S. are from Russia. South Korea is
394	the largest alternative market of the U.S. for the king crab from
395	Russia, with the Netherlands, Japan, and Norway as other
396	important alternative markets.
397	More than 90% of the tuna imported to the U.S. are
398	prepared. Four prepared tuna products are aggregated into our tuna
399	import variable. ¹² The exporting countries are Thailand, Ecuador,
400	and Vietnam. For Thai tuna, alternative markets are Australia,
401	Japan, Egypt, and Canada. For Ecuadorian tuna, it is Spain,
402	Venezuela, the Netherlands, and Columbia, and for Vietnamese
403	tuna, it is Germany, Thailand, and Japan. Since Ecuador uses U.S.
404	dollars as the currency, only the wage rates of the alternative
405	countries are used as the demand shifters.
406	
405	

4. Empirical results

 $^{^{12}}$ The majority of tuna products include those with HTS code 1604143091, 1604143099, 1604144000 and 1604143059.

408	Table 1 and Table 2 show respectively the results for the U.S.
409	imports for shrimp, king crab, and tuna. All equations are reported
410	with robust standard errors. The estimated equations perform well
411	econometrically. Except for tuna from Ecuador where the R^2 is
412	only 0.474, all equations have good explanatory power. Moreover,
413	in all equations, Hansen's J-test cannot be rejected for any of the
414	equations, indicating that the instruments are valid. In all the
415	equations, at least one of the supply shifters and one of the demand
416	shifters are statistically significant. Initially, all models were
417	estimated with a set of seasonal dummies. These were dropped if
418	an F-test indicated that they were statistically significant. In Tables
419	1 and 2, it is indicated if seasonal dummies are present or not, but
420	for brevity, the individual parameter estimates are not reported.
421	As can be seen in the first row (import quantity) of Table 1
422	and Table 2, the residual supply elasticities indicate that there is a
423	statistically significant elasticity for most of the countries,
424	indicating that the U.S. has buyer power for these products. The
425	results reported in Table 1 show that the U.S. has a high degree of
426	buyer power for shrimp imports from Thailand, Indonesia, and
427	India. However, the elasticity is not statistically significant for
428	Ecuador. For the three countries where the elasticity is statistically
429	significant, the magnitude is also relatively large. This implies that
430	the SIMP is likely to provide significant incentives to improve

431	production practices in those countries. At first glance, it may seem
432	somewhat surprising that the only country where the U.S. does not
433	have market power is the closest country geographically and
434	located in the Americas. However, most of Ecuador's exports go to
435	China, and in most years the EU also takes more Ecuadorian
436	shrimp than the U.S. as the country export primarily head-on
437	shrimp, a quality that most Asian producers cannot supply. Hence,
438	Ecuador has good alternative markets to the U.S. market.
439	Table 2 reports the estimated equations for king crab and
440	tuna. The residual supply elasticity of Russian king crab is
441	statistically significant with a relatively high magnitude (0.944),
442	indicating that the U.S. has a substantial buyer power on the king
443	crab imported from Russia. This indicates that SIMP can provide a
444	strong incentive for Russian king crabbers to improve management
445	practices to get compliance with the SIMP. For tuna, the U.S. is
446	found to have significant buyer power for Thailand and Vietnam.
447	However, the estimates of tuna imported from Ecuador are not
448	significant, indicating that the U.S. does not have buying power for
449	tuna from Ecuador. This is largely for similar reasons as for
450	shrimp, as Ecuador serves other markets partly due to the
451	controversies and requirements surrounding dolphin-safe tuna
452	(Roheim and Sutinen, 2006)
453	

	.).	Frozer	n shrimp	
Variables	Thailand	Ecuador	Indonesia	India
Import	0.636***	0.0522	0.736***	0.679***
quantities	(0.0952)	(0.0448)	(0.254)	(0.166)
Fuel price	0.197***	0.250	0.423**	0.608**
	(0.0571)	(0.152)	(0.211)	(0.251)
Fish catch	0.108	1.207***		0.0228*
	(0.143)	(0.255)		(0.0134)
Wage	0.00938		4.097***	1.723**
	(0.0543)		(0.816)	(0.837)
Exchange rate_1	0.756		0.373	4.903***
	(0.667)		(0.739)	(1.398)
Exchange rate_2	1.010		-	-
	(1.646)		0.0131***	16.04***
Evelones esta 2	(1.040) 2.988**		(0.00493) 0.546	(5.752) 0.00545
Exchange rate_3				
Evolution and note 1	(1.498)		(6.431)	(0.00465)
Exchange rate_4	0.148		-0.817	
Wass Mist A 1	(0.501)		(0.701)	
Wage_MktA1	-0.486	- 1.231***	-7.244***	- 2.406***
	(1.077)	(0.176)	(2.221)	(0.719)
Wage_MktA2	0.870	-2.718	-2.338	-0.364
	(1.188)	(2.657)	(3.607)	(0.348)
Wage_MktA3	0.867	0.548	0.696	-2.209
	(1.242)	(0.335)	(0.631)	(1.565)
Wage_MktA4	2.638***	0.0108	-2.896	
	(1.017)	(0.187)	(2.299)	
Constant	-28.10	30.25	57.95	29.47
	(20.62)	(24.10)	(49.62)	(18.47)
Seasonality	YES	YES	NO	YES
Hansen J (p- value)	0.546	0.177	0.430	0.076
R^2	0.968	0.946	0.803	0.970
Observations	42	42	42	42

454 Table 1. Residual supply model estimates for frozen shrimp
455 imported to the U.S.

- *, **, *** indicates that the corresponding coefficients are significant at the level of 10%, 5%, and 1%.

	King crab		Tuna	
Variables	Russia	Thailand	Ecuador	Vietnam
Import	0.944***	0.912***	-0.379	0.847***
quantities	(0.0925)	(0.100)	(0.547)	(0.228)
Fuel price	0.779***	0.352***	0.344**	0.393***
	(0.230)	(0.0694)	(0.166)	(0.100)
Fish catch	0.188	-0.0658	0.535*	0.420
	(0.133)	(0.0615)	(0.292)	(0.274)
Wage	-0.151	0.0642*	-0.371	1.051**
	(0.550)	(0.0356)	(0.307)	(0.471)
Exchange	-7.402***	8.06e-05		-
rate_1	(2.264)	(0.000120)		0.000784 (0.00153
Exchange	0.00427**	-0.553		-0.0580
rate_2	(0.00213)	(0.789)		(0.479)
Exchange	4.318***	-0.0261		-1.576**
rate_3	(1.092)	(0.124)		(0.644)
Exchange	0.729	-1.31e-05		
rate_4	(0.465)	(9.38e-06)		
Wage_MktA1	5.977***	-3.886***	-3.435	-5.866
	(0.633)	(1.172)	(2.426)	(4.204)
Wage_MktA2	-3.449**	-1.093***	-0.0726	0.0795
	(1.653)	(0.419)	(0.310)	(0.0581)
Wage_MktA3	-7.822***	0.758***	-1.611	2.492**
	(1.402)	(0.274)	(2.335)	(1.027)
Wage_MktA4	2.380***	-3.164***	-0.878*	
	(0.718)	(0.405)	(0.459)	
Constant	22.66	60.83***	68.84	10.57
	(17.00)	(7.969)	(51.41)	(28.81)
Seasonality	NO	NO	YES	NO
Hansen J (p- value)	0.076	0.102	0.565	0.067
\mathbb{R}^2	0.940	0.968	0.474	0.924
Observations	43	42	42	42

Table 2. Residual supply model estimates for king crab and
prepared tuna imported to the U.S.

- *, **, *** indicates that the corresponding coefficients are significant at the level of 10%, 5%, and 1%.

5. Discussion and conclusions

463	Measures influencing the market access are increasingly used to
464	influence seafood production due to sustainability concerns
465	(Brécard et al., 2009; Ankemah-Yeboah et al., 2016: 2020;
466	Bronnmann and Asche, 2017; Roheim et al., 2018; Sogn-Grundvåg
467	et al., 2019). While the most common tools are associated with
468	private measures such as ecolabels, there is an increasing interest
469	in using trade measures against exporting countries with
470	unacceptable production practices. As the largest seafood
471	importing country, the U.S. plays an important role in the global
472	seafood market. The U.S. already has import measures in place for
473	two seafood species, dolphin-safe tuna and excluding turtle
474	bycatch shrimp (Asche et al. 2016; NOAA, 2018d). To address the
475	increasing concerns over the fishery practices related to IUU
476	fishing, seafood fraud, and poor production practices in
477	aquaculture, a pilot for a more comprehensive program was
478	implemented in 2018, requiring some seafood species to provide
479	tracing information as well as documentation of the production
480	process when they enter the U.S. market (NOAA, 2018e).
481	Whether the imposed trade measures will actually influence
482	exporters' production behavior depends on the extent of the U.S.
483	market power relative to various exporters. If the buyer country
484	(the U.S. in our case) has a high degree of market power, the

485	exporters will have limited access to alternative markets and the
486	trade measures will provide strong incentives for exporters to
487	improve fishery management to comply with the SIMP. The
488	incidence will lead to a sharing of the management costs between
489	producers and U.S. consumers. On the other hand, if the U.S. does
490	not have buyer power, non-compliant producers will just redirect
491	their exports elsewhere and U.S. consumers will have to cover all
492	SIMP costs for compliant producers. In this paper, a residual
493	supply model is developed for an international trade setting to
494	investigate the degree of oligopsony power of the U.S. as an
495	importing market for shrimp, tuna, and king crab for the largest
496	exporting countries to the U.S.
470	exporting countries to the 0.5.
497	The empirical results indicate a high degree of buyer power
497	The empirical results indicate a high degree of buyer power
497 498	The empirical results indicate a high degree of buyer power of the U.S. for shrimp from Thailand, Indonesia, and India, for
497 498 499	The empirical results indicate a high degree of buyer power of the U.S. for shrimp from Thailand, Indonesia, and India, for king crab from Russia, and for tuna from Thailand and Vietnam.
497 498 499 500	The empirical results indicate a high degree of buyer power of the U.S. for shrimp from Thailand, Indonesia, and India, for king crab from Russia, and for tuna from Thailand and Vietnam. Hence, the SIMP will give strong incentives to reduce IUU fishing
497 498 499 500 501	The empirical results indicate a high degree of buyer power of the U.S. for shrimp from Thailand, Indonesia, and India, for king crab from Russia, and for tuna from Thailand and Vietnam. Hence, the SIMP will give strong incentives to reduce IUU fishing in these countries. Somewhat surprisingly, the degree of buyer
497 498 499 500 501 502	The empirical results indicate a high degree of buyer power of the U.S. for shrimp from Thailand, Indonesia, and India, for king crab from Russia, and for tuna from Thailand and Vietnam. Hence, the SIMP will give strong incentives to reduce IUU fishing in these countries. Somewhat surprisingly, the degree of buyer power of the U.S. for Ecuador is not significant, highlighting that
 497 498 499 500 501 502 503 	The empirical results indicate a high degree of buyer power of the U.S. for shrimp from Thailand, Indonesia, and India, for king crab from Russia, and for tuna from Thailand and Vietnam. Hence, the SIMP will give strong incentives to reduce IUU fishing in these countries. Somewhat surprisingly, the degree of buyer power of the U.S. for Ecuador is not significant, highlighting that product form/quality may be more important than distance and
 497 498 499 500 501 502 503 504 	The empirical results indicate a high degree of buyer power of the U.S. for shrimp from Thailand, Indonesia, and India, for king crab from Russia, and for tuna from Thailand and Vietnam. Hence, the SIMP will give strong incentives to reduce IUU fishing in these countries. Somewhat surprisingly, the degree of buyer power of the U.S. for Ecuador is not significant, highlighting that product form/quality may be more important than distance and trade costs for the disaggregated product (Baldwin and Harrigan,

508	promising for the potential efficiency of the SIMP to lead to
509	positive changes on the water, even though its impact varies with
510	species and countries. However, it is still worthwhile to note that
511	the U.S. having market power is only a necessary condition.
512	Whether the incentives of compliance are strong enough to cover
513	the corresponding costs is an open question.
514	SIMP measures are a significant change in trade practice as
515	they prescribe general conditions for many seafood species to be
516	imported to the U.S. market, and leave no room for trade itself to
517	help improving production practices. ¹³ This may pose a challenge
518	particularly to developing countries with limited capacity to
519	manage their seafood production in a way required by SIMP, and
520	these will then also be excluded from the U.S. market. Hence, it is
521	likely that there is an implicit north-south bias in the
522	implementation of SIMP. ¹⁴ The measures may also lead to a
523	reallocation of trade patterns if there are countries that currently do
524	not export significant quantities of seafood to the U.S. which can
525	comply with the SIMP at a lower or no cost. ¹⁵

¹³ SIMP requires a consistent filing system for all priority species import to include the header records, permit number, product data, and vessel specific catch information (NOAA, 2019). However, the production practices vary by seafood species.

¹⁴ NOAA modified the rules to implement SIMP for aggregated harvests from small vessels and small-scale aquaculture to help reduce the compliance costs (NOAA, 2019). However, this is likely to miss data and lead to a lack of efficiency for the SIMP implementation in developing countries.

¹⁵ The literature on anti-dumping measures in the seafood market indicates that this may be a real challenge, as is shown for salmon and shrimp (Asche et al.,

526	In a global market, the number of alternative markets will
527	have impacts on the effectiveness of any trade measure. ¹⁶ This will
528	limit the effect of any unilateral action by any country, and this
529	will also be the case for the U.S. SIMP. However, the seafood
530	market is not only global, but developed countries are taking a very
531	high share (>70%) of the imports (Asche et al., 2015; Anderson et
532	al., 2018). These countries are largely the ones that share the U.S.
533	concerns over IUU fishing. Hence, coordinating the U.S. efforts
534	with the EU, in particular, would increase the efficiency of trade
535	measures to combat IUU fishing. The EU has used trade policy to
536	combat IUU fishing for about a decade using a traffic-light based
537	card system (Leroy et al., 2016). However, this is less
538	discriminating than the U.S. system in that it is targeting national
539	management and not specific species.
540	

^{2016).} However, there are also important differences in that the anti-dumping cases targeted at a limited number of named countries, while the SIMP is comprehensive.

¹⁶ Import data of the U.S. and EU show inconsistent restrictions on the import seafood species. Exporting seafood to the EU may not be included in the SIMP, and vice versa (NOAA, 2019). It is thus not surprising to notice that EU has detected many unsustainable fisheries management system since it went into effect, while there are no IUU vessels reported since the SIMP implementation.

541 Acknowledgments

542	Asche acknowledges support from Florida Sea Grant and Hatch
543	project #1015617. Researcher(s) own analyses is derived based in
544	part on data from The Nielsen Company (US), LLC and marketing
545	databases provided through the Nielsen Datasets at the Kilts Center
546	for Marketing Data Center at The University of Chicago Booth
547	School of Business. The conclusions drawn from the Nielsen data
548	are those of the researcher(s) and do not reflect the views of
549	Nielsen or Florida Sea Grant. Nielsen or Florida Sea Grant is not
550	responsible for, had no role in, and was not involved in analyzing
551	and preparing the results reported herein.
552	

References:

554	Anderson, J.L., Asche, F., Garlock, T., 2018. Globalization and
555	Commoditization: The Transformation of the Seafood
556	Market. Journal of Commodity Markets. 12, 2-8.
557	Ankamah-Yeboah, I., Asche F., Bronnmann, J., Nielsen, M., 2020.
558	Consumer preference heterogeneity and preference
559	segmentation: The case of ecolabeled salmon in Danish
560	retail sales. Marine Resource Economics, 35(2), 159-176.
561	Ankamah-Yeboah, I., Nielsen, M., Nielsen, R., 2016. Price
562	premium of organic salmon in Danish retail sale.
563	Ecological Economics, 122, 54-60.
564	Appelbaum, E., 1982. The Estimation of the Degree of Oligopoly
565	Power. Journal of Econometrics, 19(2–3): 287–99.
566	Asche, F., Bellemare, M., Roheim, C. A., Smith, M. D., Tveteras,
567	S., 2015. Fair Enough? Food Security and the International
568	Trade of Seafood. World Development, 67, 151-160.
569	Asche, F., Bennear, L. S., Oglend, A., Smith, M. D., 2012. U.S.
570	Shrimp Market Integration. Marine Resource Economics,
571	27(2), 181–192.
572	Asche, F., Roheim C. A., Smith M. D., 2016. Trade Intervention:
573	Not a Silver Bullet to Address Environmental Externalities
574	in Global Aquaculture. Marine Policy. 69, 194-201.
575 576 577	Baker, J. B., Bresnahan, T. F., 1988. Estimating the residual demand curve facing a single firm. International Journal of Industrial Organization, 6 (3), 283-300.
578	Baldwin, R., Harrigan, J., 2011. Zeros, Quality, and Space: Trade
579	Theory and Trade Evidence. American Economic Journal:
580	Microeconomics, 3, 60–88.
581	Brécard, D., Hlaimi, B., Lucas, S., Perraudeau, Y., Salladarré, F.,
582	2009. Determinants of demand for green products: An
583	application to eco-label demand for fish in Europe.
584	Ecological Economics, 69(1), 115–125.
585	Bresnahan, T. F., 1982. The Oligopoly Solution Concept is
586	Identified. Economics Letters, 10(1–2): 87–92.
587	Bronnmann, J., Asche, F., 2017. Sustainable Seafood from
588	Aquaculture and Wild Fisheries: Insights from a Discrete

42, 113-119.	
on, E. I., Walker, D. G., 2010. Policies and practices for quaculture food safety in China. Food Policy, 35(5), 47178.	
F. C., Godgrey, H.O., Tomova, A., Ivanova, L., Dolz, H. fillanao, A., Buschmann, A.H., 2013. Antimicrobial use quaculture re-examined: its relevance to antimicrobial esistance and to animal and human health. Environ. ficrobiol., 15(7), 1917–1942.	
y, J., 2019. Testimony to the U.S. House of representative's committee on natural resources. November 14, 2019.	
S., 1999. Conduct Parameters and the Measurement of Market Power. Journal of Econometrics, 88(2): 227–50.	
, Norman, V., 1980. Theory of International Trade. Cambridge University Press, Cambridge.	
C. A., Sexton, R. J., 1992. Oligopsony Potential in agriculture: Residual Supply Estimation in California's rocessing Tomato Market. American Journal of agricultural Economics, 74(4), 962.	
8. Retrieved from ttps://www.eia.gov/opendata/qb.php?sdid=PET.EMD_E 02D_PTE_NUS_DPG.M	EP
20. USA fisheries statistics: production, consumption, a rade. Retrieved from http://www.fao.org/in- ction/globefish/countries/countries/usa/usa- rade/en/?page=7&ipp=5&tx_dynalist_pi1%5Bpar%5D= roxOntzOjE6IkwiO3M6MToiNyI7fQ%3D%3D	
and aquaculture software. FishStatJ - software for fishe tatistical time series. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 21 July 2016.	•
018. Economic Research, Federal Reserve Bank of St. ouis. Retrieved from ttps://fred.stlouisfed.org/categories/158	
T., Asche, F., Anderson, J.L., Bjørndal, T., Kumar, G., orenzen, K., Ropicki, A., Smith, M. D., R. Tveterås, 202	20.
 A. J., 2019. Testimony to the U.S. House of the presentative's committee on natural resources. November 14, 2019. S., 1999. Conduct Parameters and the Measurement of Market Power. Journal of Econometrics, 88(2): 227–50 Norman, V., 1980. Theory of International Trade. Cambridge University Press, Cambridge. C. A., Sexton, R. J., 1992. Oligopsony Potential in Agriculture: Residual Supply Estimation in California's rocessing Tomato Market. American Journal of Agricultural Economics, 74(4), 962. 8. Retrieved from ttps://www.eia.gov/opendata/qb.php?sdid=PET.EMD_ 202D_PTE_NUS_DPG.M 20. USA fisheries statistics: production, consumption, rade. Retrieved from http://www.fao.org/in- ction/globefish/countries/countries/usa/usa- rade/en/?page=7&ipp=5&tx_dynalist_pi1%5Bpar%5E foxOntzOjE6IkwiO3M6MToiNyI7fQ%3D%3D and aquaculture software. FishStatJ - software for fish tatistical time series. In: FAO Fisheries and Aquacultur Department [online]. Rome. Updated 21 July 2016. 018. Economic Research, Federal Reserve Bank of St ouis. Retrieved from ttps://fred.stlouisfed.org/categories/158 T., Asche, F., Anderson, J.L., Bjørndal, T., Kumar, G). s a)= heeree

626	A Global Blue Revolution: Aquaculture Growth across
627	Regions, Species, and Countries. Reviews in Fisheries
628	Science and Aquaculture. 28(1), 107-116.
629	Gephart, J. A., Froehlich, H. E., Branch, T. A., 2019. To create
630	sustainable seafood industries, the United States needs a
631	better accounting of imports and exports. Proceedings of
632	the National Academy of Sciences of the United States of
633	America, 116(19), 9142–9146.
634 635 636	Goldberg, P. K., Knetter, M. M., 1999. Measuring the intensity of competition in export markets. Journal of International Economics, 47(1), 27–60.
637 638 639 640 641	 Havice, E., 2017. US Seafood Import Monitoring Program: Briefing and Analysis for the Pacific Islands Forum Fisheries Agency. Retrieved from https://www.ffa.int/system/files/Havice 2017 - Brief on US Seafood Import Monitoring Program- FINAL.pdf
642	Kobayashi, M., Msangi, S., Batka, M., Vannuccini, S., Dey, M.M.,
643	Anderson, J.L., 2015. Fish to 2030: The Role and
644	Opportunity for Aquaculture, Aquaculture Economics and
645	Management, 19:3, 282-300.
646	 Kroetz, K., Luque, G.M., Gephart, J.A., Jardine, S.L., Lee, P.,
647	Moore, K.C., Cole, C., Steinkruger, A., Donlan, C.J., 2020.
648	Consequences of seafood mislabeling for marine
649	populations and fisheries management. Proceedings of the
650	National Academy of Science. 117 (48) 30318-30323.
651	Lampert, T., 2017. Stopping Illegal Fishing and Seafood
652	Fraudsters: The Presidential Task Force. Bost. Coll. Law
653	Rev., vol. 58, no. 5, pp. 1629–1658, 2017.
654	Lau, L. J., 1982. On Identifying the Degree of Competitiveness
655	from Industry Price and Output Data, Economics Letters,
656	10(1–2): 93–99.
657 658	Leroy, A., Galletti, F., Chaboud, C., 2016. The EU restrictive trade measures against IUU fishing. Marine Policy, 64, 82–90.
659 660 661 662	Love, D. C., Nussbaumer, E., Harding, J., Gephart, J.A., Anderson, J.L., Stroll, J.S., Thorne-Lyman, A.L., Bloem, M., 2021. Risks Shift Along Seafood Supply Chains. Global Food Security, 28(March), 100476.

663	Love, D.C., Asche, F., Conrad, Z., Young, R., Harding, J., Neff,
664	R., 2020. Food Sources and Expenditures for Seafood in
665	the United States. Nutrients, 12(6), 1810.
666 667 668	McCluney, J. K., Anderson, C. M., Anderson, J. L., 2019. The fishery performance indicators for global tuna fisheries. Nature Communications, 10(1), 1641.
669	Morrison Paul, C. J., 2001. Cost Economies and Market Power:
670	The Case of the U.S. Meat Packing Industry. Review of
671	Economics and Statistics, 83(3): 531–40.
672	Nielsen, 2018. Retrieved from
673	https://www.chicagobooth.edu/research/kilts/datasets/nielse
674	n.
675	NOAA, 2018a. U.S. Seafood Import Monitoring Program to
676	Include Shrimp and Abalone by December 31. NOAA
677	Fisheries. Retrieved November 27, 2018, from
678	https://www.fisheries.noaa.gov/feature-story/us-seafood-
679	import-monitoring-program-include-shrimp-and-abalone-
680	december-31.
681	NOAA, 2018b. Final Rule Traceability. Retrieved January 13,
682	2018, from
683	http://www.iuufishing.noaa.gov/RecommendationsandActi
684	ons/RECOMMENDATION1415/FinalRuleTraceability.asp
685	x.
686	NOAA, 2018c. Shrimp and Abalone Compliance Provisions for
687	the Seafood Import Monitoring Program December 31
688	through March 1, 2019. NOAA Fisheries. Retrieved
689	February 17, 2019, from
690	https://www.iuufishing.noaa.gov/RecommendationsandAct
691	ions/RECOMMENDATION1415/Implementation.aspx.
692	NOAA, 2018d. Shrimp Import Legislation for Sea Turtle
693	Conservation. Retrieved July 31, 2019, from
694	https://www.fisheries.noaa.gov/national/endangered-
695	species-conservation/shrimp-import-legislation-sea-turtle-
696	conservation.
697	NOAA, 2018e. Compliance Guide: U.S. Seafood Import
698	Monitoring Program. Retrieved July 1, 2019, from
699	https://www.iuufishing.noaa.gov/Portals/33/SIMPComplia
700	nceGuide2018rev.pdf?ver=2018-12-11-172442-553.

701	NOAA, 2019. Regulating Aquaculture. Retrieved July 1, 2019,
702	from NOAA (20197). Final Ruel to Implement U.S.
703	Seafood Import Monitoring Program RIN 0648-BF09:
704	Final Regulatory Impact Review and Final Regulatory
705	Flexibility Analysis. Retrieved June 1, 2019, from
706	https://www.regulations.gov/document?D=NOAA-NMFS-
707	2015-0122-0112.
708	NOAA, 2020. Fisheries of the United States, 2018 Report.
709	Retrieved from
710	https://www.fisheries.noaa.gov/resource/document/fisherie
711	s-united-states-2018-report.
712	Roheim, C. A., Bush, S. R., Asche, F., Sanchirico, J. N., Uchida,
713	H., 2018. Evolution and future of the sustainable seafood
714	market. Nature Sustainability, 1(8), 392–398.
715	Roheim, C., Sutinen, J., 2006. Trade and Marketplace Measures to
716	Promote Sustainable Fishing Practices. International Centre
717	for Trade and Sustainable Development, Paris, France.
718	Schroeter, J. R., 1988. Estimating the Degree of Market Power in
719	the Beef Packing Industry. Review of Economics and
720	Statistics, 70(1), 158–62.
721	Schroeter, J. R., Azzam, A. M., Zhang, M., 2000. Measuring
722	Market Power in Bilateral Oligopoly: The Wholesale
723	Market for Beef. Southern Economic Journal, 66(3), 526–
724	47.
725 726 727	Shamshak G. L., Anderson J. L., Asche F., Garlock T., Love D. C., 2019. U.S. seafood consumption, Journal of the. World
	Aquaculture. Society., 50, 715-727.
728 729 730 731	=
729 730	Aquaculture. Society., 50, 715-727.Smith, M.D., Oglend, A., Kirkpatrick, J., Asche, F., Bennear, L.S., Craig, J.K., Nance, J. M., 2017. Seafood Prices Reveal Impacts of a Major Ecological Disturbance. Proceedings of

740	Steen, F., Salvanes, K. G., 1999. Testing for Market Power Using a
741	Dynamic Oligopoly Model. International Journal of
742	Industrial Organization, 17(2), 147–77.
743	Straume, H. M., Anderson J. L., Asche, F., Gaasland, I., 2020b.
744	Delivering the goods: The determinants of Norwegian
745	seafood exports. Marine Resource Economics, 35(1), 83-
746	96.
747	Straume, H. M., Landazuri-Tveteraas, U., Oglend, A., 2020a.
748	Insights from transaction data: Norwegian aquaculture
749	exports. Aquaculture Economics and Management, 24(3)
750	255-272.
751	Tveterås, S. L., 2015. Price Analysis of Export Behavior of
752	Aquaculture Producers in Honduras and Peru. Aquaculture
753	Economics and Management, 19(1), 125–147.
754	Uchida, H., C.A. Roheim and R. Johnston. 2017. Balancing the
755	health risks and benefits of seafood: How does available
756	guidance affect consumer choices? American Journal of
757	Agricultural Economics, 99(4):1056–1077.
758	UN Comtrade, 2018. Retrieved from https://comtrade.un.org
759	USITC, 2018. Retrieved from https://dataweb.usitc.gov/
760 761 762	Willette, D. A., Cheng, S. H., 2018. Delivering on seafood traceability under the new U.S. import monitoring program. Ambio, 47(1), 25–30.
763	World Bank, 2018. Retrieved from
764	https://data.worldbank.org/indicator/SL.EMP.MPYR.ZS
765	WWF, 2007. Tuna in Trouble: Major Problems for the World's
766	Tuna Fisheries. Retrieved March 20, 2019, from
767	http://wwf.panda.org/?92540/Tuna-in-Trouble-Major-
768	Problems-for-the-Worlds-Tuna-Fisheries.
769	WWF, 2014. Illegal Russian Crab: An investigation of trade flow.
770	Retrieved November 27, 2018, from
771	http://wwf.panda.org/?231010/Illegal-Russian-crab-
772	entering-US-market https://dataweb.usitc.gov/
773	
774	

775 Appendix

776 The total 2016 U.S. imports of the HTS product codes used in this

paper are reported in Table A1 together with the imports from the

countries used in the analysis and their share of imports. The

development over time is shown in Fig. A.1-A.3.

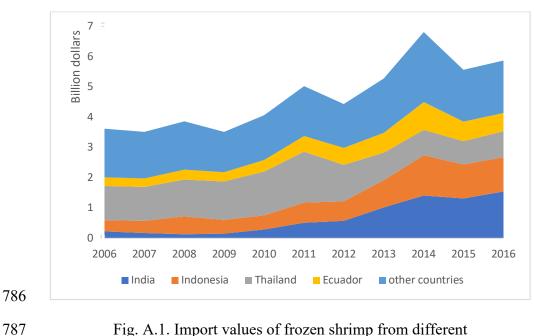
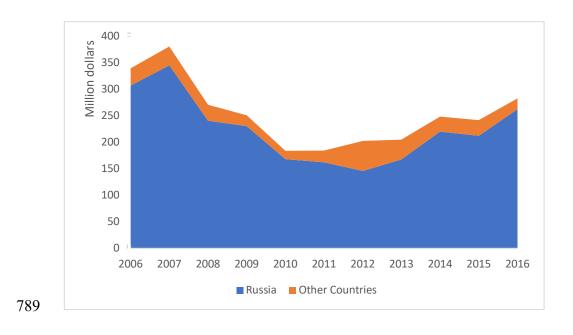
780

781 Table A1. Import value (in million dollars) of investigated seafood

782 products in 2016

	Russia	\$263 M
King crab	% share in total imports	92.88%
	Total king crab imports	\$283 M
	India	\$1546 M
	% share in total imports	26.34%
	Indonesia	\$1135 M
Frozen shrimp	% share in total imports	19.33%
r tozen sin imp	Thailand	\$852 N
	% share in total imports	14.52%
	Ecuador	\$600 N
	% share in total imports	10.21%
	Total shrimp imports	\$5872 M
	Thailand	\$1076 N
	% share in total imports	42.84%
Duan and tuna	Ecuador	\$259 N
Prepared tuna	% share in total imports	10.32%
	Vietnam	\$243 M
	% share in total imports	9.69%
	Total tuna imports	\$2511 M

783

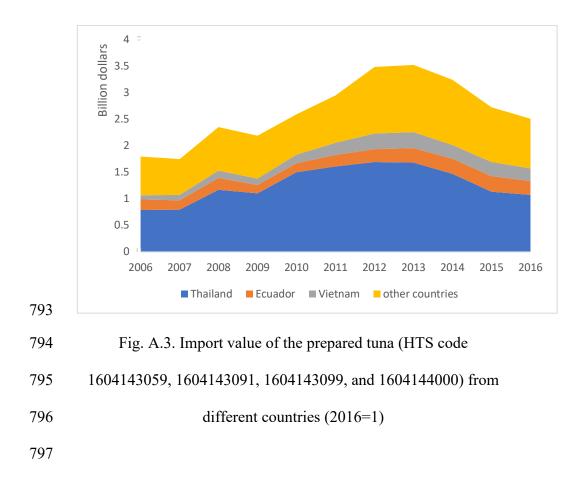


Fig. A.1. Import values of frozen shrimp from different

countries (2016=1)

- 790 Fig. A.2. Import value of king crab and crabmeat from
- 791 different countries (2016=1)

